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Nuclear Forensics and Radiochemistry: Radiation Detection
Robert S. Rundberg

Abstract: Radiation detection is necessary for isotope identification and assay in
nuclear forensic applications. The principles of operation of gas proportional
counters, scintillation counters, germanium and silicon semiconductor counters will

be presented. Methods for calibration and potential pitfalls in isotope quantification
will be described.



Nuclear Forensics and
Radiochemisty: Radiation Detection



Gas Proportional Counters and
lonization Chambers

* Los Alamos fission product yields rely heavily on beta counting with gas
proportional counters.

This requires chemical separation from interfering isotopes because the beta spectrum
is a continuum.

The robust separation methods used at Los Alamos are documented in LA-1721

The advantage of beta counting is that fission products being neutron rich decay by beta
emission the efficiency is generally high ~30 percent. A beta is emitted with every decay,
whereas gamma counting may require additional information to obtain a decay rate
(branching ratios, internal conversion coefficients, etc.)

Samples must be prepared in a reproducible manner. The size of the deposit is always
the same. The count rate must be corrected for the thickness of the deposit.

* Gas proportional Counters still have particle energy resolution, while
electron multiplication gives sensitivity to low energy betas.

e The Fano factor is about 0.2.



The Proportional Counting Region

Practical Gaseous lonisation Detection Regions

This diagram shows the relationship of the gaseous detection regions, using an experimental concept of applying a varying voltage to a
cylindrical chamber which is subjected to ionising radiation. Alpha and beta particles are plotted to demonstrate the effect of different ionising
energies, butthe same principle extends to all forms of ionising radiation.

The ion chamber and proportional regions can operate at atmospheric pressure, and their output varies with radiation energy. However, in
practice the Geiger region is operated at a reduced pressure (about 1/10" of an atmosphere) to allow operation at much lower voltages;
otherwise impractically high voltages would be required. The Geiger region output does not differentiate between radiation energies.

Variation of ion pair charge with applied voltage

Low-penetrating radiation enters via an end window, but high-penetrating
radiation can also enter via the cylinder side wall
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How Charge Multiplication is
Accomplished

Creation of discrete avalanches in a proportional counter

Original ionisation events
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Electric field strength at a counter anode
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Equation for Multiplication

The equation for multiplication, i.e., gain, in a gas proportional counter

M= mg/b) inxi {m (paln‘(/b/a)) —Ink ] ()

Where a is the anode wire radius, b is the radius of the counter, p is the pressure
of the gas, and V is the operating voltage. K is a property of the gas used and
relates the energy needed to cause an avalanche to the pressure of the gas. The
final term AV) gives the change in voltage caused by an avalanche.




Detectors and the Interaction of
Gamma Rays with Matter
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* The photoelectric effect is most likely to result in a photopeak.
* The higher the atomic number of the detector material the better.



The Physics of Scintillators

The scintillation process in inorganic materials is due to the electronic band
structure found in crystals and is not molecular in nature as is the case with
organic scintillators.[17] An incoming particle can excite an electron from the
valence band to either the conduction band or the exciton band (located just
below the conduction band and separated from the valence band by an
energy gap; see picture). This leaves an associated hole behind, in the valence
band. Impurities create electronic levels in the forbidden gap. The excitons
are loosely bound electron-hole pairs which wander through the crystal
lattice until they are captured as a whole by impurity centers. The latter then
rapidly de-excite by emitting scintillation light (fast component). The activator
impurities are typically chosen so that the emitted light is in the visible range
or near-UV where photomultipliers are effective. The holes associated with
electrons in the conduction band are independent from the latter. Those
holes and electrons are captured successively by impurity centers exciting
certain metastable states not accessible to the excitons. The delayed de-
excitation of those metastable impurity states again results in scintillation
light (slow component).



Nal(Tl) Spectrum of Cs-137
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Counts

Nal(Tl) Spectrum of Co-60
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The Energy Resolution of Scintillators

Scintillators are fit well by a

Gaussian.
. e . LaBr-1 Gamma Spectrum
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High Resolution HPGe Detectors
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BASIC DETECTOR DIMENSIONS

Identifier Description Dimension (mm)
M Detector diameter 43.6
K Detector length 36.2
J Detector end radius 8, nominal
L Hole depth 32.6
0 Hole diameter 10.4
MISCELLANEOUS DETECTOR ASSEMBLY DIMENSIONS AND MATERIALS
Identifier Description Dimension Material
A Mount cap length 94 mm Aluminum
B End cap to crystal gap 3 mm N.A.
C Mount cup base 3.2 mm Aluminum
D End cap window 0.5 mm Beryllium
E Insulator/shield 0.05 mm Aluminized Mylar
F Outside contact layer 0.3 Micron Boron
G Hole contact layer 1000 Micron Lithium
H Mount cup wall 0.76 mm Aluminum
1 Cad nna weeall 12 neen LY T




The Shape of an HPGe Photopeak
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Fit of C-137 Gamma Spectrum

Gamma Spectrum
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Gamma Ray Calorimetry

1. SINGLE GAMMA RAY DECAY

The simplest case for calibrating a 4w detector is a single gamma ray decay.The
equation describing the detection of a photopeak is,

epf
(1) R:1+aA’

where, €? is the photopeak efficiency, f is the gamma ray abundance, « is the in-
ternal conversion coefficient, and A is the disintegration rate. The equation describ-
ing the detection of any interaction with the detector including compton scattered
photons is,

eTf
2) k= 1+aA’

where €7 is the total efficiency. Unfortunately, equations 1 and 2 are independent
and activity cannot be determined without calibrating the detector with a known
source of gamma rays. If the 4w detector is sufficiently thick the total efficiency
approaches unity. It will now be shown that complex decay schemes offer distinct
advantages with respect to detector calibration.
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2. TWO LEVEL GAMMA RAY CASCADES

The problem with calibrating a 47 detector with a two level decay scheme is
summing of part or all of the energy from both gamma rays. If the two gamma
rays are in coincidence the observed rate for the photopeak of gamma ray 1 is:

&N e fa \, T
(3) Rl—lj_al(l—1+02)A—€f(1—€z)A

where, €/ is the photopeak efficiency for gamma ray 1, €] is the total efficiency
(Comptons and photopeak) for gamma ray 2, and A is the disintegration rate.
Likewise the observed rate for the photopeak of gamma ray 2 is:

(4) Ry =¢(1-¢)A



The sum peak is observed when the full energy of both gamma rays are absorbed.
The sum peak rate is:

(5) Ry = A
The fourth observable is the rate of Comptons plus photopeaks. This rate is

(6) R =6 A+GA-EGA
The ratio of singles to sum peaks is proportional to the activity,
RiR
po =1 -)A=A-dA-gA+gA

thus, the activity is,

R\R
(7) A=""214 Ry,

Rip

independent of the detector efficiency. The first term in equation 5 becomes small
as the 4-Pi detector efficiency becomes large.



Gamma Ray Calorimetry

* Absolute disintegration rate can be
determined without knowing the efficiency.

* Applies only to decay branches that have
gamma rays or detectable x-rays.

* |n the past, at Los Alamos, sources were
counted in 3x3, 5x5, and 11x11 Nal(Tl) well
detectors. The approach towards 100%
efficiency was observed.
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Silicon Drift Detector Resolution

e The resolution is

determined by the Fano

limit and detector
noise.

e The fit used a Fano
factor of 0.11 and a 33
eV (sigma) noise added

Full Width Half Maximum (eV)

in quadrature.



X-ray Spectra Fit to the Voigt Profile

* The Voigt profileis a
convolution of the
Lorentzian distribution
with a Gaussian.

* Depleted uranium has a
Thorium x-ray, 13 keV,
protactinium at 13.34
keV, and uranium at
13.65 keV

X-ray Spectrum
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Alpha Counting

 Detectors are silicon surface barrier detectors,
Frisch grid ionization chamber, and 2-Pi gas
proportional counters.

 The energy resolution is typically limited by
sample preparation. The best deposits
require:
— Clean chemical separation from contaminants.
— Perchloric acid fuming to remove organic contaminants

— Electrodepositing on platinum
— Flaming to remove any other residues



Detector Structure

= Clover Structure (2 sets of 4 crystals)
« Each crystal ~55 mm diam x 70 mm long

« Quantify gamma rays in cascades and utilize
coincidence counting methods

* Preserve high resolution while
attaining a large volume and
detector face area

— Environmental samples can be
quite large

— Accommodate a wide range of
sample sizes and shapes




Shielding / Structure / Background

= Compton Suppressed

« Reduce cosmic ray induced
background

— Lab sits at ~7500' elevation
« Reduce Compton continuum

= Low Background
» Low-Z selected materials stand and structure
— Stand fabricated entirely from plastics
« Special shielded room
— Entire room is the shield, 12" thick pre-WWII steel




Compton suppression

= Modeled using GEANT prior to
purchase

= Custom made Nal (Tl) detector
« 2" thick walls, 16” long
« OFHC Copper outer jacket

« Thin copper and plastic
inner jacket

» Reduced background
~ 10x




Data Acquisition System

= Digital Spectral Data Processing
« Each channel digitized and time-tagged as stored data.
— Commercial hardware, custom software
» Fully integrated with Web-based visualization system
— Readout singles, sum-of-singles, full addback modes




Data Processing

= All data is captured event-by-event, the pulse height
determined, and stored with a 13 ns precision time tag.

" The Compton suppressor used to selectively veto events.
= Datais processed post-run in one or more ways

* Any individual single HPGe crystal, with or without the Compton
suppression active

* Singles mode is the sum of all HPGe detector events, with no regard
to timing, with veto active (Singles with veto) or inactive (Singles)

 Addback mode is where HPGe events coincident in time are added
together to make a single event, with veto active (Addback with
veto) or without veto active (Addback)



Photo-Peak Efficiencies

« Gamma ray cascades complicate photo-peak
efficiencies in high geometry detectors. The rate
under a photo peak for a 2 gamma ray cascade is
described by the following:

R]PhotoPeak = gPhotopeak f1 *(1_ gloral fz)* Activi 1y

* The decay scheme must be known to calculate the
apparent photo-peak efficiency. The true photo-peak
efficiencies and the total efficiencies must be known

as a function of gamma ray energy.

* The total efficiency for the Nal veto has yet to be
determined.



Single Photon Spectra from a 2
Gamma Ray Cascade
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 |f a single crystal has an
event with full energy from
a single photon, the
coincident events in the
remaining crystals are
histogrammed.

* This is one of the
advantages of list mode
data.

 Peak to total efficiencies
can then be determined
from these spectra.

« Example is Co-60.



PhotoPeak Efficiency
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Lu-176 Determined Relative to
Natural Lutetium
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Mass Determination

* Lu-176 target 7 mm diameter 35683 counts £ 433 in
8000 minutes

*9.7 mg natural Lu foil diameter is 6.35 millimeter

* foil thickness is 30.6 milligrams per square centimeter

 Areaunder the 306.8 keV peak 43438 counts + 720
in 8000 minutes

* 0.216 counts per minute per microgram Lu-176

*Target mass is 209 micrograms Lu-176
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